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ABSTRACT 

In this paper, we present a markerless 3D motion capture 
system based on a volume reconstruction technique of non 
rigid bodies. It depicts a new approach for pose estimation 
in order to fit an articulated body model into the captured 
real-time information. We aim at analyzing athlete’s 
movements in real-time within a 3D interactive graphics 
system. The paper addresses recent trends in vision based 
analysis and its fusion with 3D interactive computer 
graphics. Hence, the proposed system presents new methods 
for the 3D reconstruction of human body parts from 
calibrated multiple cameras based on voxel carving 
techniques and a 3D pose estimation methodology using 
Pseudo-Zernike Moments applied to an articulated human 
body model. Several algorithms have been designed for the 
deployment within a GPGPU environment allowing us to 
calculate several principle process steps from segmentation 
and reconstruction to volume optimization in real-time.   

 
Index Terms— Video based analysis, 3D 

reconstruction, pose estimation, markerless motion 
capturing 

1. INTRODUCTION 

The analysis of human motion has become an investigative 
and diagnostic tool for different areas such as medicine, 
sports or video surveillance. Ranging from human activity 
recognition to an in-depth analysis of motion in order to 
better understand normal and pathological movements, 
different methods have been introduced for motion analysis 
such as kinematic and kinetic modeling or the realization of 
complex capturing systems based on multiple video sensors 
recording the positions of markers attached to the human 
body. Nevertheless, the analysis of human body motion and 
movements within artificial generated environments still 
imposes major challenges to dedicated solutions. Despite 
the potential of marker based motion capturing systems, 
major hurdles for a broad acceptance have been the high 
costs for their installations, the requested controlled 
environments and the complexity of pre-processing phases 
for its use. At the same time, marker-free MoCap systems 

imply a paradigm shift away from pure marker based 
techniques. Whereas marker based systems provide 3D 
positions of markers attached to the target object, which can 
be captured in real-time using infrared cameras, marker-free 
systems rely on the deployment of an articulated human 
body model. This articulated body model provides “a priori” 
3D positions of body segments enabling a proper 
association of poses as well the identification of individual 
body segments which allows for the extraction of kinematic 
information. A major bottleneck is the real-time processing 
of the underlying video analysis, segmentation and 
reconstruction steps in order to facilitate fast model fitting 
and analysis cycles.  

Thus, in this paper, we present a new approach for a 
real time 3D markerless motion capture system applied to 
the analysis of three dimensional human body movements. 
It addresses typical motion analysis challenges within sports 
science and evaluates on the joints’ angle ratios. Based on a 
multiple camera set-up, our workflow starts from an 
adequate segmentation of video streams, a robust 
background and silhouette extraction enabling a subsequent 
3D real time reconstruction of the target objects’ volumes 
and a new approach to accurately estimate the 3D pose of a 
human body model based on a statistical elevation using 
Pseudo-Zernicke moments  

2. RELATED WORK 

Edward Muybridge pioneered the work on motion capturing 
with his famous experiments in 1887 called “Animal 
Locomotion” [1]. Since then, a lot of research changed 
methodologies and techniques of motion capturing and its 
analysis. With recent technology developments in the area 
of hardware accelerated computer and cameras, marker 
based motion capture systems, e.g. [2][3], provided an 
accurate position of target objects. In order to overcome 
physical limitations such as installation restrictions and 
imposed constraints for user’s activity capturing, maker-free 
motion capture systems, e.g. [4][5] have been introduced to 
overcome those drawbacks. Our approach for markerless 
motion capturing and its reconstruction for 3D interactive 
analysis, comprises different techniques addressing real-



time photo-realistic 3D reconstruction and model based 3D 
pose estimation. 3D reconstruction research started early on 
by stereo vision based techniques proposed by [6] being 
extended into a multiple camera environment, e.g. [7][8]. 
Those methods are designed to reconstruct depth maps from 
particular viewpoints though being not suitable for a full 3D 
scene reconstruction. Image based visual hull reconstruction 
(IBVH) proposed by [9] is a real-time 3D scene 
reconstruction technique from multiple view images. The 
algorithm does not solve a correspondence problem. 
Instead, it calculates the convex hull of silhouettes within all 
view images. A voxel coloring method [10] did resolve the 
problem of reconstructing concave objects.  

In view of best-for-fit pose estimation of an articulated 
model onto a real body pose, a large number of papers have 
been published, e.g. [11][12] to name few of many. 
Typically, model based 3D human pose estimation methods 
are separated into two approaches: appearance-based 
methods [13] and part-based methods [14]. Those classes 
differentiate in either using the full human appearance 
information or exploiting parts of a human body such as 
face, torso, and limbs for a model fitting.  

3.  VISION BASED 3D RECONSTRUCTION OF NON 
RIGID BODIES  

 
3.1 Kernel Density Estimation based Background 

Subtraction 

Our methodology relies on a high quality video 
segmentation of target objects. We use a background 
subtraction technique to detect the deformable objects in the 
scene by comparing each new frame to a pre captured model 
of the scene background. Here, we apply a non-parametric 
technique for background modeling and foreground 
extraction. Our approach is based on a kernel density 
estimation applied to the probability density function of the 
intensity of each pixel within each image. Kernel density 
estimation based background modeling aims at capturing 
and storing recent information about the image sequence, 
continuously updating this information in order to capture 
fast changes in the scene background [15].  

The intensity distribution of a pixel can change quickly. 
So we can estimate the density function of this distribution 
at any moment of time given only very recent history 
information if we want to obtain a sensitive detection. Using 
the recent pixel information, the probability density function 
of each pixel depending on intensity value It(x,y) at time t 
and can be non-parametrically estimated using the kernel, K 
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where N is the recent pixel information used to compare the 
current image’s pixel information. We choose our kernel 
estimation function to be a Gaussian kernel for color 
images. Figure 1 shows the background subtraction from 

multiple color and gray images (source: HumanEva1 
dataset).  

 

 
Figure 1  Results of a silhouette extraction using our kernel density 
estimation based background subtraction (basis for the appearance 

model and used for several downstream processes; color plates) 
 
3.2 3D Reconstruction of Target Objects 

Our 3D reconstruction methodology is based on a multiple 
video stream captured from different calibrated camera 
positions. We exploit the presented foreground information 
as extracted appearance model of the target object.  

Based on this input information we reconstruct the 
external surface of the volume based on the IBVH being 
improved by the voxel coloring technique as presented by 
[10]. The methodology we present in this paper combines 
both approaches with an additional tracking component. 
Thus, we use the first technique in order to reconstruct a 
very coarse 3D shape based on only few images, as it is 
error prone to the quality of the images, position of each 
viewpoint, quality of camera calibration and the complexity 
of the object’s shape. Afterwards we deploy the voxel 
coloring which reconstructs the radiance or color at the 
surface points by projecting every voxel to each image 
plane. Our proposed 3D reconstruction methodology 
continuously tracks the 3D boundary of target object and 
carves the voxels by checking the color consistency within 
the captured and tracked 3D boundary. This leads to an 
efficient and accurate method improving previous 
approaches deployed within a large environment. 
Practicability aspects and a high degree of parallelism of the 
used techniques allow the mapping of several sub-processes 
and computing steps to a parallel computing architecture 
and hence have been implemented on CUDA. Figure 2 
shows the concept of the configuration of a 3D lattice by 
tracking the target object and its inverse projection within 
the 3D scene using n calibrated static cameras. Here, we 
                                                 
1 http://vision.cs.brown.edu/humaneva/ 



continuously track the center of gravity g1,g2,...,gn of our 
appearance model in each image and calculate the G points 
in the 3D scene which we get by the intersection of n 3D 
rays. We extract the 3D lattice by combining the silhouette 
images of the target object using the camera calibration 
information in order to set the visual rays within the 3D 
space for all silhouette points, which define a generalized 
cone. The 3D lattice in a whole scene is then determined by 
its intersection of those cones. Using the 3D lattice, we 
deploy the photo-consistency measure to determine if a 
certain voxel X does or does not belong to the object being 
reconstructed. 

 
 
Figure 2  3D lattice configuration by tracking the 3D boundary of  

a target object (color plates) 

The following figure shows the results obtained in different 
steps.  

  
Figure 3  Results (color plates): multiple input images ref figure 1; 
3D lattice and 3D reconstructed object within 3D lattice (bottom 

left); body model different viewpoints (bottom right) 

4.  3D POSE ESTIMATION 

In order to comply with the paradigm change fitting an 
articulated model into the information provided by multiple 
video streams, we exploit a 3D pose estimation technique 
enabling an efficient mapping of body segments and joints 
into the reconstructed volume. Within our appearance 
model, statistical moments are used as segment descriptors. 
The approach is based on the Pseudo-Zernicke Moments 
(PZM), which are used as segment descriptors. Those 
moments are typically the statistical expectation of certain 
power functions of a random variable. In general, moments 
of order (p+q) for a continuous function 2f : R R→  can 
be written as 

( ) ( )pq pqM x, y f x, y dxdyφ
+∞ +∞

−∞ −∞
= ∫ ∫  

with p,q=0,1,2,... and ( )pq x, yφ  the basis function. 
Adapting this to image processing tasks, f(x,y) may be 

understood as pixel intensities of the segmented binary 
image Pxy. The discretization leads to 
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Teh and Chin [16] evaluated various different moments 
and as a result they could show that Zernike moments and 
especially Pseudo-Zernike moments outperform other 
moments in terms of overall performance. Pseudo-Zernike 
moments are an adaptation of standard Zernike moments 
[17],[18] with orthogonal radial polynomials as basis 
functions of order p and repetition q 
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 Pseudo-Zernike moments 

are defined as 
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The reconstruction of the body movements is based on 
the minimization of the difference between artificial and 
real silhouettes within all camera images. Three basic 
constraints are used to achieve real time capability: 
1. a minimal setup of the human skeleton to achieve a 

reduction of the dimension of the search space. 
2. a discretization of possible movements into a predefined 

set of individual body poses. 
3. time consuming generation of artificial silhouettes is 

done prior to the online reconstruction phase. 

A typical minimal setup for both rendering and 
reconstruction tasks uses only 15 joints with overall 32 
degrees of freedom to describe the human skeleton: Root 
joint (for the position and orientation of the human body, 
sacroiliac (separate lower and upper body part), hips, knees 
and ankles, shoulders, elbows and wrists and the skullbase. 
This minimal kinematic model of a human body used as 
well for the generation of artificial silhouettes. The 
algorithm thus evaluates as follows: In a first step a database 
is generated after each new camera calibration consisting of 
vectors for each predefined pose, where each vector has: 
 all Pseudo-Zernike moments of all four artificial 

silhouettes, 
 used angles for the root node of the avatar, 
 all internal joint rotation of the actual pose and 
 a reference to silhouette images, which are saved during 

building the database. 



Each of these vectors is one record of the database, 
which is used during the online recognition process to find 
the best matching pose for a set of silhouettes derived from 
real camera image data. It is reasonable, that the best match 
will be found, if the Euclidean distance between two vectors 
is minimal. A fast approximation to find the best matching 
vector is to sort the database by the first Pseudo-Zernike 
moment. Here, the database is sorted by the quantity of the 
first moment. During the recognition phase, the vector with 
the closest first moment is located and for a given 
neighborhood of n vectors (e.g. 1000) the Euclidean 
distances between the vector of real silhouettes and database 
vectors are calculated. 

5. EXPERIMENTS & CONCLUSION 

We setup our proposed methodology using a Pentium 4 1.2 
GHz CPU and equipped with recent NVIDIA Geforce 8200 
graphics board (CUDA support). The multiple camera 
system is using four color Imaging Source cameras at 
640x480 resolution for each captured image stream. We 
lead some experiments to analyze the athletes motion in 
real-time. The capturing square space is 2m x 12m in order 
to account for an athlete’s sprint start. In a first experimental 
set-up, we also validated our results at a museum exhibition 
for innovative computer applications in sports science. 
Figure 4 shows the set up and illustrates the different steps, 
i.e. input images, 3D reconstruction and 3D pose estimation.  

 
Figure 4  (color plates) Snapshot of the experimental set up (left); 
results of 3D reconstruction (middle), 3D pose estimation (right)  

The benchmark during the installation of the exhibit in order 
to evaluate for the real-time performance (ref. table 1): 

 
This paper presents a novel framework for markerless 

motion capturing based on an optimized 3D reconstruction 
and 3D pose fitting technique into a multiple video stream. 
It introduces a new tracking mechanism for an improved 
image based volume reconstruction and an appearance 
model for pose estimation based on PZM. Some bottlenecks 
have been observed so far in our approach: The quality of 
3D reconstruction and 3D pose estimation depends 
significantly on the noise within the segmented images. A 
pretty good “sharp” segmentation of the target object could 
lead to the distortion of the 3D volume reconstruction 
(especially due to light foreground and bright background). 
In turn, the 3D pose estimation leads to a significant higher 
pose detection facilitating smooth transitions of the skeleton 
animation (figure 4 above). A less sharp segmentation leads 
to a good reconstructed volume but a lower quality in pose 
fitting (figure 4 below). 
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